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We study kinetic one- and two-dimensional Ising models whose transition 
probabilities occur according to two (or more) locally competing temperatures. 
The model is solved analytically and studied numerically on different 
assumptions to reveal a variety of stationary nonequilibrium states and phase 
transitions; we also investigate the system relaxation in some typical cases. 
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1. I N T R O D U C T I O N  A N D  M O D E L  S Y S T E M  

Relatively simple nonequilibrium states (see, e.g., Ref. l)  occur when the 
system of interest is coupled to some external agent (e.g., two baths at dif- 
ferent temperatures), the coupling producing stationary states characterized 
by a small set of macroscopic parameters. Those situations cannot be dealt 
with in general with the powerful ensemble theory for equilibrium Gibbs 
states, but most  usually one needs to develop specific approximate methods 
for each particular problem. Thus, some recent progress in this field 
concentrates on mathematically well-defined lattice model systems (25) with 
simple analytical solutions and nontrivial physical behavior. 

This paper is also concerned with the description of nonequilibrium 
stationary states and phase transitions occurring in a simple model system. 
The model here consists, as in the familiar Ising model, (~8) of a simple 
cubic lattice in d dimensions, at each site of which there is a spin variable 
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s(x) = +_1, x e Z d. Each configuration s = {s(x), x e Z a} has an interaction 
energy defined by 

H(s) = - J  ~ *  s(x) s(y) - h ~ s(x) (1.1) 
x , y  x 

where the starred sum is over nearest-neighbor lattice points x and y, J is 
the coupling constant, and h represents the external magnetic field. The 
configurational density probability function P(s) evolves with time 
according to a Markovian master equation, 

dP(s, t) _ ~ [w(sls') P(s', t) - w(s'l s) P(s, t)] (1.2) 
dt  s' 

where w(s'ls) is the transition probability per unit time for s ~s ' .  It is 
further assumed (7'8) that each transition between consecutive configurations 
s ~ s', just inverts the spin at a site, say s(x)-~ -s(x),  with probability 
w(s ' l s ) -w(x;  s) depending on the change of the configurational energy 
A H = H ( s ' ) - H ( s )  that would be caused by the inversion. An explicit 
expression for w(x; s) in Eq. (1.2) leads to equations for the relevant quan- 
tities; for instance, one immediately has for the system magnetization 

d(s(x)) 
- - -  2(s (x)  co(x;s)) (1.3) 

dt 

where 

( A )  = ~  A(s) P(s, t) (1.4) 
s 

The equilibrium properties may then be obtained within the present 
formalism by requiring that d ( A ) / d t  = 0, i.e., ( s ( x ) w ) =  0, etc. 

We shall, however, introduce a nonequilibrium condition in the model 
by assuming that w(x; s) results from the competition between n different 
microscopic mechanisms of evolution, namely 

w(x; s) = ~ piw(il(x; s) (1.5) 
i = l  

and 

i p i = l ,  Pi~>0 for all i (1.6) 
i = l  

Each mechanism i is characterized by a canonical transition probability w (i) 
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satisfying individually a detailed balance condition at temperature Ti. 
Thus, there is a stationary regime for which 

L Pi(S(x) w(i)( x'~ S))st = 0  (1,7) 
i=l 

and similar equations for higher products of spins. One notices here that 
the case where each transition probability would drive the system to the 
same equilibrium state satisfies ( s ( x )  w ( i ) ( x ; s ) ) = O  for all i, so that 
Eq. (1.7) holds trivially, while the stationary nonequilibrium regime may 
depend on the w ~i) and on the Pi otherwise. 

Even though the above model may be worked out, at least formally 
and sometimes explicitly, for different temperature distributions Ti, we 
shall refer here for the sake of simplicity to the case of only two competing 
temperatures T 1 and T2; that is, 

w(x; s) = p w ~  s) + (1 -- p) w(2)(x; s) (1.8) 

This may be interpreted by assuming that the spin flip at each site x is 
attempted with probability p as if it were in contact with a thermal bath at 
temperature T 1 = T - A  T and with probability 1 - p  as if the temperature 
of the bath inducing the transition were 7"2 = T +  AT; T>~ A T >  O. The limit 
A T ~ O  then recovers the usual equilibrium case, while A T r  reveals a 
rich nonequilibrium behavior, which will be described in the following 
sections. The more general case (1.5) with an arbitrary temperature 
distribution Ti is of course even more interesting, but we limit ourselves to 
illustrating the simplest case. This will be done, when h = 0 and J >  0, by 
solving the model in the case d =  1, by considering two different mean field 
approximate solutions and a perturbative treatment around the 
equilibrium (Onsager) solution for d = 2 ,  and by performing a Monte 
Carlo simulation in the case d = 2 ;  we consider both the case where 
3 T = c o n s t  and the case of a temperature-dependent increment, such as 
T1,2= ( 1 T 6 )  T, 3 =const .  

2. S O L U T I O N  FOR d = l  

Let us first consider explicitly the one-dimensional case d =  1 (h = 0) 
and Glauber's transition probabilities, (7) defined as 

w (i) = �89 1 - -  � 8 9  + 1) + s ( x  - 1)-[ } (2A) 

where 

7~ = tanh(2J/kTi) ,  J > 0 (2.2) 

822/49/3-4-10 
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It readily follows from Eq. (1.7) that the stationary regime is characterized 
by 

m [ - 1 - p ~ -  ( l - - p )  7z] = 0  (2.3) 

where m -  (s(x))st,  independent of x. The only solution of Eq. (2.3) with 
physical relevance in the present case (AT> 0) is m = 0, i.e., any stationary 
translation-invariant state of the ferromagnetic model must have zero 
magnetization for all possible temperatures 0 ~< T1 < Tz; even more, z, since 
this is a translation-invariant attractive spin system, the uniqueness of that 
stationary state also follows. (9) 

Concerning (higher order) spin correlation functions, one only needs 
to notice that the global transition probability (1.5) is given by 

w(x; s )  = �89 { 1 - k~o~s(x)Es(x + 1) + s ( x -  1)] }, ~)eff ~" E Pi ~)i (2.4) 
i 

for the choice (2.1); the same solution thus follows as for the equilibrium 
(d= 1) model (7) with an effective temperature given by 

tanh( ZJ/k T~fO = ~ P i tanh( ZJ/k T~) (2.5) 
i 

Since we are dealing with nonequilibrium states, they may depend essen- 
tially, however, on the particular choice for w (~). For instance, when one 
replaces (2.1) by the so-called Metropolis rates, namely 

w ~'~=~(3+~;) 1 , + z (7 , -  1){s(x)[s(x+ 1 ) + s ( x -  1)] +s(x+ 1) s ( x -  1)} 

( 2 . 6 )  

for d =  1 where 

~;-= exp(-4J/kTi)  (2.7) 

the same solution follows again as for the equilibrium case, except that the 
effective temperature is now 

T e f f  I = --(k/4J) In ~ pie 4s/gvi (2.8) 
i 

instead of (2.5), while the special choice (1~ 

w ( i ) = l - v " s ( x ) [ s ( x + l ) + s ( x - 1 ) ] + ( 7 7 ) Z s ( x + l ) s ( x - 1 )  (2.9) 

2 We acknowledge a referee for this remark. 
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with 7~'--tanh(J/kTi), leads to 

m ( 1 - 2 7 " ) + ( y " ) Z ( s ( x + l ) s ( x ) s ( x - 1 ) ) = O  (2.10) 

where 

7'--=- ~ pi77, (7")2- ~ p,(7;') 2 (2.11) 
i i 

which reveals itself as a more difficult case than (2.1) and (2.6) [in 
particular, (2.10) shows the possibility of having nonzero magnetization 
states in one dimension for a combination of dynamical mechanisms (2.9) 
when the distribution of the values of s(x)  is non-Gaussian].  

3. A M E A N  FIELD S O L U T I O N  

Let us consider now the mean field version of the model with 
transition probabilities (2.1) as defined, for instance, in the Bragg-Williams 
approximation(6); namely 

w (i) = �89 - ~is(x)]  (3.1) 

where 

and 

~/i = tanh(Jm/kTi ) ,  J > 0 (3.2) 

dm/d~ = P(Yl - m )  + (1 - p)(~22- m) (3.3) 

where ~ -  te. This predicts ferromagnetic ordering in the stationary state 
below a critical (mean) temperature, i.e., when T~< Tc, where Tc will be 
determined below. Before looking explicitly at this fact, however, we notice 
that the nonlinear equation (3.3) may be expanded around m = 0 to write 

dm/d~ "~ - ( 1  - A)  m -- Bm 3 (3.4) 

with 

A - p K ? ~ + ( 1 - p ) K ~  1, B = � 8 9  3] (3.5) 

m = ( s ( x ) ) s t = N  aEs(1)+s (2)+  .-- +s(N)]s t  

with the latter equality becoming an identity as N---, or. It then follows 
from Eq. (1.3) that 
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where we have introduced the notation K = k T / J ,  etc. The corresponding 
solutions are 

m = . ~ l / 2 [ . ~ m o  2 -f- B )  exp(2.~r) - B] -1/2 

where mo = m(t = 0), when .~ = 1 - A ~ 0, and 

m = (2Br -I- m 0 2 )  -1 /2  

(3.6) 

when A = 1. The interpretation of Eqs. (3.6) and (3.7) is similar to that in 
the equilibrium case: the relaxation from any initial magnetization m0 
slows down as one approaches the condition A = 1. This corresponds 
indeed to the critical temperature Kc, given that the stationary regime for 
K < K c  ( m r  is characterized, according to Eq. (3.4), by the condition 
Bm2+ (1 - A ) =  0 leading, in particular, to A --. 1 as m ~ 0. 

The critical temperature is thus determined by the condition 

with 

I~  -- AK  2 = p(Kc + AK) + (1 - p)(Kc - AK) (3.8) 

or, dropping the alternative minus sign, which happens to be physically 
irrelevant, 

K~=�89 + [1 + 4 ( 2 p -  1 )AK+4 A K 2 ]  m} (3.9) 

This exists for all AK and p and has the correct behavior when p ~ 0, 1, i.e., 
for the "pure" equilibrium mean field cases at temperatures K-T-AK with 
critical temperatures 1 -T- 3K, respectively. In particular, one has, for small 
AK, 

K - - I + ( 2 p - 1 ) A K + 4 p ( 1 - p ) A K 2 + ( 9 ( z l K  3) (3.10) 

predicting, for instance, very small corrections to the equilibrium case 
Kc = 1 when p = �89 One also has from Eq. (3.3) in the stationary state 

m = p tanh(m r K~) + (1 - p) tanh(m/K2) 

or, for small values of m, 

rn ~ B( --~)P, ~ = T/Tc - 1 (3.12) 

~ 2 = B  l [ p K ~ Z + ( 1 - p )  K~ -2] (3.13) 

and fi = 1 
The above model with A K =  const is thus characterized by a classical 

critical behavior. Nevertheless, a more involved situation follows (within 

(3.11) 

(3.7) 
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the present mean field approximation) when A K is temperature-dependent. 
Let 0 <<. AK  = f (  K) <<. K and, near the critical temperature, 
A K =  f(Kc)  + ae + (~(g2), where e = K/Kc - 1 and a - [f(k)/K]xcK~. Then 
K1, 2 ~ K~. 2 + (K~ -T- a) e > 0, with K~, 2 ~ K c + f ( K c ) .  On the other hand, the 
stationary state near Kc may be characterized, according to Eq. (3.4), as 
( 1 - A ) + B m 2 - ( 9 ( m 4 ) = O ,  where A and B are the functions defined in 
Eq. (3.5), which may be expanded as 

with 

A = 1 + ( - e )  a 1 + e2a 2 + (9(e 3) (3.14) 

a l = - p ( K c - a ) ( K C ~ ) - 2 + ( 1 - p ) ( K c + a ) ( K g )  -2 (3.15) 

a 2 - p ( K c - a ) ( K ~ ) - 3 + ( 1 - p ) ( K c + a ) ( K ~ )  -3 (3.16) 

a 2 > 0  for all a and p, and B = B  c+(9(~), Bc>0 ,  for all a and p. The 
stationary condition may be written accordingly: 

m2Bc = - a l g + a 2 ( - g ) z  +c(m4,~3, m2g); a2, B c > 0  (3.17) 

Three cases seem of interest. When a I = 0 ,  o n e  has from Eq. (3.17) that 
m ~  ( - e ) ( a 2 / B J / 2 ,  implying /~= 1. The case a t >0 ,  on the contrary, is 
again classical, given that it implies m ~ ( - g ) l / i ( a l / B c ) l / 2 + C ( e ) ;  the 
relevant example K1.2=(1 T-6)K, 0 < 6 <  1, so that 3 K = f ( K ) = 6 . K ,  
belongs to this class, with a = 6. K c. Finally, when al < 0 the solution m 
from Eq. (3.17) is no longer real. The example AK,,~ 6. E, 6 = const, near Tc 
is compatible with the above three cases. One has immediately 
K~ = K ~ = K C =  1 and al = 1 +6(1 - 2 p ) ,  so that a I = 1 for p =  �89 when p > �89 
(p < �89 is symmetrical with 6 < 0), al is positive, zero, or negative depending 
on whether 6 is smaller, equal to, or larger than ( 2 p -  1)-1. 

Let us consider now two interesting limits in the equations above, 
namely (1) the lowest temperature is zero, K~ = 0, and K2 is finite, and (2) 
K 1 = K is finite and K2 = K +  AK is a very high temperature, say A K =  oo. 

The mean field solution (3.11) reduces in case 1 to 

m = p + (1 - p) tanh(m/K2) (3.18) 

implying m > 0  for all p ( > 0 )  and/s  i.e., a finite temperature K2 cannot 
destroy completely the freezing produced by the lowest temperature. In 
particular, when K2 is large enough one has from Eq. (3.19) that 

m ----- p[-1 + (1 -- p)/AK] (3.19) 

Case 2, on the other hand, is characterized by 

m = p tanh(m/K) (3.20) 
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becoming nonzero for K <  Kc--p ,  i.e., there is always (in the present mean 
field approximation) a phase transition to states with some spontaneous 
magnetization in spite of the strong perturbation introduced by the 
mechanism at infinite temperature. 

4. C L U S T E R  S T A T I S T I C S ;  d = l  A N D  2 

The basic model in Section 1 may also be solved by following a 
method used recently by Dickman ~4~ in a different nonequilibrium 
problem. ~3) The method, which in Some sense reduces to the mean-field 
Bethe approximation for equilibrium problems, rests upon specific rate 
equations [-approximations belonging to the family of the master equation 
(1.2)] for the density of spins up, n =-N+/N, and for the density of up-up 

i N pairs of spins, u= N+ +/~q , where q represents the lattice coordination 
number, with the general structure 

da 
dt F(a) =- Z 

local conf. 

w(3H)  P(local conf.) Aa 

where a represents n or u, and Aa is the corresponding change in the 
transition. Such an equation can easily be written explicitly by a detailed 
counting of (small) cluster configurations, their respective probabilities of 
occurrence P(local conf.), and the corresponding transition probabilities for 
the inversion of the central spin. {4) 

In order to illustrate the method, we first consider a one-dimensional 
chain of spins with nearest-neighbor interactions in contact with a single 
bath at reduced temperature K. There are eight different configurations in 
this case: + + + ,  - + + ,  + + - ,  - + - ,  + - + ,  - - + ,  + - - ,  and 

with respective probabilities P=uZ/n,  u ( n - u ) / n ,  u ( n - u ) / n ,  
(n - u)2/n, (n - u)2/(1 - n), (n - u)(1 - 2n + u)/(1 - n), (n - u)(1 - 2n + u)/ 
( 1  - n), and (1 - 2n + u)2/(1 - n). When the inversion of the central spin is 
governed by the Metropolis dynamics, i.e., when w = m i n [ 1 ,  exp 
( - 3 H / k T ) ] ,  the corresponding transition probabilities are q = e x p ( -  4/K) 
for + + + and - - - ,  and 1 for the rest of the configurations. Thus, one 
may simply write 

dn/dt = Fl(n, u; q) (4.1) 

with 

z u2] 1 1 
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where v = 1 - n and z - 1 - 2n + u, and 

du/dt= F2(n, u; q) (4.3) 

with 

u 2 u (n - u) 2 z 
F2(n, u; q) = - 2 v / - - -  2u n - + 2 - -  ~- 2(n - u ) -  (4.4) 

Y/ / l  ~9 t~ 

To go beyond this pair  or  first-order mean  field approximat ion,  one would 
write equat ions similar to (4.1) or (4.3) for the concent ra t ion  of  triplets of 
spins and introduce the corresponding variables into F1, F2, F3, etc. 

Every equilibrium state of  the system is characterized in the present 
approximat ion  by a pair of values for the independent  variables n and u 
satisfying the s tat ionary condi t ion F 1 = 0 and F2 = 0 and the corresponding 
stability condit ion;  it follows that  the latter reduces in practice here to the 
condit ion 

(OF1/On)n, u < 0 (4.5) 

Above the critical temperature  T~, the system may  also be characterized by 
the proper ty  that  m = 0 and, consequently,  that  n = v = �89 and u = z, so that  
it follows from F ,  = 0 that  

1 1 
T )  Tc (4.6) u = 2  1 +ql/2, 

Consequently,  the critical point  (where the stability of the solution n = �89 
breaks down)  satisfies 

( ~ F 1 / O n ) . -  1/2 . . . . .  = 0 (4.7) 

or, explicitly, 

n-2[~/(1 - u) u +  ( � 89  u) 2] = 0 (4.8) 

whose only solution [which is also a solution of Eq. (4.6)] is 

uc = �89 qc = 0 (4.9) 

That  is, the critical temperature for the Ising chain follows here as Tc = 0, 
as in the case of  the Bethe approximat ion  when the lattice coordina t ion  
number  is q = 2. 
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The  relevance of the above  equi l ibr ium example  for our  purposes  rests 
upon  the fact that  Eqs. (4.1)-(4.9) hold also in the case of  a chain of  spins 
with two compet ing  temperatures ;  the only difference is that  now one has 

q = p e x p [ - 4 / ( K - A g ) ] + ( 1 - p ) e x p [ - 4 / ( K + A K ) ]  (4.10) 

Thus,  unlike the equi l ibr ium case, q is positive for any  p such that  0 < p < 1 
and AKr  and, as a consequence,  there is no critical point  at all, i.e., 
Eq. (4.5) is always fulfilled. 

This compels  one to consider  the two-dimensional  version of the 
model  in the same approx imat ion .  The  relevant  functions in this case are 

F l = ( n -  ) k--V-5--~)+4(n-u)3 - ~ - - ~  + 6 ( n - n ) 2 \ ~ - y - ~ - g j  

(z3  u3) 
-F4ql(n--u ) + r/2 .---~ -----~. (4.11) 

and ( u2) 1 (n-  u)4 
F~- ~3 F(n-u) ~\v ~ ~ ) + 3 ( ~ - u )  ~ 

3__u3  
+rll(n--u) -~ n 3 ) - -q2-~  (4.12) 

where q l = p q + ( 1 - p ) ~ / '  and t l2=pr l2+(1-p)  rf 2, with r / = e x p [ - 4 /  
( K - A K ) ]  and ~ f = e x p [ - 4 / ( K + A K ) ]  for Met ropol i s  dynamics.  Fo r  
T~> Tc (i.e., m = 0: n = v = �89 and u = z), one has in the s ta t ionary  state 

(1 - 2u) 3 (1 + 2u) - 16u3[u(q2 - 2ql ) + q l ]  = 0 (4.13) 

giving u(T>~ To) as a function of K, AK, and p, while the condi t ion (4.7) 
produces  

c 3 3  2 1  2 - u ~ ( ~ -  u~)  + - q2uc(-~uc- 1) 6r/~ 3uc(�89 uc)2(3uc - 1) 

+ (�89 - u~)3(6u~ - 1) + 3(�89 _ u~)4 = 0 (4.14) 

When  u = u~ = 1/3, Eqs. (4.13) and (4.14) reduce to a single equat ion,  

5 - 16(q~ + t/~) = 0 (4.15) 

This characteries  the critical t empera tu re  as a function of p and  AK. 
Figures 1 and  2 represent  the var ia t ion of K~ with p and AK. Figure 3, on 
the other  hand,  represents the coexistence curve m = m(K1) for different 
values of  AK and p obta ined  as a solution of F1 = 0 and F2 = O. 
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Fig. 3. The coexistence curve m = rn(Kl) for the two-dimensional model with two competing 
temperatures for different values of AK and p. The curves are~ from top to bottom, as follows: 
( ) p = �89 and AK = 0, 0.5, 1.5, and 2; (- -) p = 0.8 and z l K=  2.5 and 3.75. 
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Fig. 4. The quanti ty AK* producing a zero critical value for the lowest temperature, K~ = 0, 
as a function of p. The vertical line is the asymptote p* = 27/32. Thus, only the region below 
and to the right of the solid line AK*(p) corresponds to the existence of a positive critical 
temperature K~. 



Stationary Nonequilibrium States in the Ising Model 563 

Those figures reveal an interesting fact. Figure 1, for instance, shows a 
monotonic decrease of K~ toward zero with increasing AK when p is 
smaller than, say, p* (represented by a solid line in the figure), revealing 
that there is no positive solution K~(p, AK) when AK>AK*(p).  The 
function K*(p) is depicted in Fig. 4. The above value for p* can be 
obtained by making K~ -- 0 in Eq. (4.15); it follows that the values of K~ for 
which K~ = 0 are given by 

q~ --- exp(-4/K~) = -�89 + �89 + 5/4(1 - p)] 1/2 (4.16) 

which cannot be satisfied (r/~c ~< 1) when p >~p* =27/32. 

5. A P P R O X I M A T E  C O R R E L A T I O N S  

Let us consider in this section the two-dimensional version of the 
model with nearest neighbor interactions characterized by a transition 
probability given by 

W(Z)=~ [ 1 ---2~iSx, y(Sx+l,y'~-Sx 1,y)] 

X 1---~)iSx, y(Sx,y+l"~Sx,y_l) (5.1) 
where i=  1, 2; ~/i is defined in Eq. (2.2); T~, 2 = T-T-AT; and x (y) represents 
the index describing the lattice sites in the horizontal (vertical) direction. 
The properties of the stationary state follow from Eq. (1.7) as 

m[1 + 2p(72 -- 71) -- 272] + J[PT~+ ( l - -p )  722] 

(Sx.y(sx+l.y+Sx l,y)(Sx, y_l+Sx, y+t))st=O (5.2) 

In principle, the correlation functions in this expression may be treated 
approximately by assuming that their nonequilibrium behavior at tem- 
perature T is the weighted arithmetic mean of the corresponding exact 
equilibrium behaviors at temperatures T1 and T2 (i.e., with weights p and 
1 -  p, respectively), with these obtained from the Onsager solution. This 
amounts in particular to the neglect of some nonequilibrium effects in the 
correlation functions, but, as the approximation becomes exact in the limit 
AT--* O, one may still hope to get a good description for small values of 
A T; of course, the most important deviations from the real behavior will 
show up near the critical temperature, where the situation is essentially 
governed by the correlations. 
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Let mo(T)  represent the Onsager solution at temperature T, 

mo(T)  = [1 -- (1 - 72) 2 7 -4-] 1/8 (5.3) 

One has from Eq. (1.3) for the equilibrium state 

mo(Ti)(1 - 2yi ) + 17~(s(s + s)(s + s) )~ = 0 (5.4) 

where s(s + s ) ( s + s )  is a simplified notation for the averaged quantity in 
Eq. (5.2) and ( . . . ) e  represents the equilibrium average at temperature T~. 
Our assumption is thus 

(s(s + s)(s + s) )s, 

= -4P?{-Zmo(T1)( l  - 271) - 4(1 - p )  7~2mo(Tz)(1 - 272 ) (5.5) 

which can be used in Eq. (5.2) to obtain the basic equation for the model: 

p71 + (1-p)7  
re(T) = [ p7 72mo( T~)(1 -- 27, ) 

1 + 2 p ( 7 2 - 7 1 ) -  272 

+ (1 - p)  7yZmo(T2)(1 - 272)3 (5.6) 

This may easily be generalized along two different lines: the consideration 
of more than two temperatures, as indicated in Section 1, and the introduc- 
tion of different coupling constants, say Jx and Jy, for the two principal 
directions of the lattice. 

The expansion of Eq. (5.6) for small values of A T  produces after some 
algebra the result 

m( T) = mo( T ) -- (2p -- 1) A T ~mo/~T + . . .  (5.7) 

where the term of order A T a, which represents the leading deviation from 
the equilibrium value mo when p = �89 is a complicated function of p, 7, m0, 
Omo/OT, and ~2o/0T2; we avoid writing it explicitly here because it turns 
out to be more convenient to use Eq. (5.6) directly for practical purposes, 
and also because the range of validity of the present approximation reduces 
in practice to very small values of A T. The interest of Eq. (5.7), which has a 
singularity at T =  T ~ where Omo/OT is not well defined, rests upon the 
fact that one can see explicitly how the consideration of some non- 
equilibrium effects introduces corrections to the equilibrium behavior 
mo(T). It also allows one to find a criterion for the validity of this 
approximation; that is, from the condition (2p-1)AT(Omo/OT)~ too(T) 
one has the requirement 

T , ~  ~cT~ - -  -1[9r~8' ~/,, - -  1 ) AT ( 5 . 8 )  
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implying, in particular, that one should not trust the critical behavior (e.g., 
values for the critical indexes) following from this approximation. The 
overall behavior predicted by Eq. (5.6) only compares well with the Monte 
Carlo data for ATe0.05. A better approximation would require the 
introduction of the concept of an effective temperature (along the lines of 
the argument at the end of Section 2) together with an appropriately renor- 
malized Hamiltonian, a task that goes beyond the scope of the present 
paper. 

6. A MONTE CARLO EXPERIMENT 

The results obtained via different approximations in the preceding sec- 
tions can be compared with the behavior of the basic model in a series of 
Monte Carlo experiments. The model in Section 1 was implemented in the 
computer by choosing at random with probability Pi the temperature T i 
that enters into the transition probability for the inversion of the spin at 
the randomly selected lattice site. We shall refer to the case T 1 = T - A  T, 
T 2 = T +  AT, Pl = P 2  = �89 and Metropolis dynamics. The system is a square 
lattice of size 96x96 (and sometimes 152x 152). We used the so-called 
multispin coding ~11'~2) and a shift-register random-number generator, ~ 
namely Yi=XOR (Yi-q+p, Yi-q) with p =  103, q=250; the former was 
written in PROFESSIONAL FORTRAN for IBM PCs with 8087 
coprocessors. The total data required 3480 hr in our student computer lab. 

The magnetization data for 96 x 96 lattices are presented in Fig. 5. Our 
first observation here refers to the finite-size effects, which are apparently 
larger than in the equilibrium (i.e., A T - - 0 )  case, e.g., the finite-size tails in 
Fig. 5 are similar to the ones when the lattice is 60 x 60 for AT-= O, and 
they decrease by 15 % when we used instead ! 52 x 152 lattices. We expect 
to study those finite-size effects in the near future in more detail, and 
concentrate now mostly on the qualitative aspects of the phenomena. The 
situation depicted by Fig. 5 is, on the other hand, rather clear: A T =  0.05 
produces unobservable differences from the equilibrium Onsager case, 
while AT-= 0.5 shows a definite shift of the critical temperature toward Tc 
(AT=0.5)=2.25 +0.01 J/k. As expected, the mean field approximation in 
Section 4 only describes the data qualitatively (cf. Fig. 5); note, however, 
that some of the differences between mean field and Monte Carlo results 
are probably just a consequence of the differences in dynamics implied by 
the mean field approximation (cf. last paragraph in Section2). The 
approximation in Section 5 is more accurate, but it fails to reproduce the 
data near Tc even for A T =  0.05. 

The energy data are represented in Fig. 6; this basically confirms our 
observations above. In particular, Fig. 6 reveals that the only differences 
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Fig. 5. The system magnetization as a function of the mean temperature in the case of a 
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( - - )  the equilibrium result and ( - - )  the respective predictions in Section 4. The dashed lines 
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Onsager critical temperature. 
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Fig. 7. The specific heat as a function of temperature; ((3, O; same notat ion as in Fig. 5) the 
values obtained from the energy fluctuations; ( - - ;  - -) results from a temperature derivative of 
the energy data in Fig. 6 (after performing cubic interpolations of those data). 

between the data for AT=0.05 and the Onsager result occur extremely 
near the critical temperature. Figure 7 shows the behavior of the specific 
heat obtained from the fluctuations of the energy; this is also compared in 
the figure with the behavior of the temperature derivative of the energy; 
both computations give the same result for the present nonequilibrium 
problem. 
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